

High Performance Polymer-Bonded Explosive Containing PolyNIMMO for Metal Accelerating Applications

Ron Hollands and Virgil Fung BAE SYSTEMS, Land Systems UK, Munitions & Ordnance

> Karen S. Burrows Naval Surface Warfare Center, Indian Head Division

NDIA IMEMT Symposium 2004 Distribution Statement: A-Approved for Public Release; Distribution is unlimited.

Presentation Outline

BAE SYSTEMS

Objective of Study

- Rationale & Methodology
- Energetic Polymer & Plasticisers
- Candidate Selection
- Candidate Assessment
 - Thermal Properties
 - Physical & Mechanical Properties
 - Hazard Properties
 - Shock Sensitiveness
 - Performance
- Summary
- Acknowledgements

To develop new explosive compositions for metal accelerating applications which possess improved performance and lower vulnerability in comparison with currently available military explosives

To develop and utilise fully energetic binder systems based on polyNIMMO

Specifically, to at least match the performance of Octol 75/25 in terms of detonation pressure and metal accelerating ability whilst demonstrating reduced vulnerability

Rationale & Methodology -Formulation Rationale

BAE SYSTEMS

HMX chosen as energetic filler to maximise performance

- Readily available
- Higher density, detonation velocity & pressure

Fully energetic binder systems evaluated

- i.e. energetic polymer with energetic plasticiser
- Binder contributes towards performance
- Allows more latitude with level of solids loading to achieve trade-offs
 eg performance vs hazard vs processing

Programme addressed castable formulations

- Ease of processing for medium to large warhead filling operations
- Castable PBXs generally demonstrate better IM compliance
- More binder present so better mechanical properties
- Established processing technique

Rationale & Methodology -Formulation & Assessment Methodology

BAE SYSTEMS

- PolyNIMMO binders plasticised with a range of energetic plasticisers
 - Butyl NENA
 - ROWANITE 8001 (K10)
 - GAPA
- Performance modelling to identify trends and narrow field of formulation and processing activities
- Series of initial compositions prepared on the small scale to investigate the effect of formulation variables and to screen in small scale tests:
 - Processing, hazard, thermal behaviour, mechanical properties
- Leading candidate down selected then manufactured on intermediate scale for further assessment:
 - Shock sensitiveness
 - Performance

Energetic Polymer and Plasticisers

Energetic Polymer

BAE SYSTEMS

PolyNIMMO Pre-polymer

- a homopolymer of 3-nitratomethyl-3-methyl oxetane (NIMMO) possessing reactive terminal primary hydroxyl groups
 can be cured using isocyanates to give rubbers
- manufactured by ICI in the UK

$$- \underbrace{H_3C \swarrow CH_2ONO_2}_{H_2-C-CH_2} - \underbrace{H_3C \swarrow H_2ONO_2}_{n}$$

n = 22

Viscosity at 40°C (poise)	560
Viscosity at 60°C (poise)	100
Hydroxyl value (mg KOH/g)	18-22
Molecular Weight (notional)	5500
Density (g/cm ³)	1.26
Glass transition (° C)	-25
Heat of Formation (kCal/mol)	-73.9
Heat of Explosion (kCal/mol)	28.8
Temperature of Ignition (°C)	no less than 165º C

Energetic Plasticisers (1)

BAE SYSTEMS

Butyl NENA

- The nitratoethylnitramine family (NENAs) contain both nitrate ester and nitramine functionalities
- Traditionally used as plasticisers in gun and rocket propellants
- Manufactured by NSWC
 Indian Head Division

$$C_4 H_9 - N - CH_2 - CH_2 ONO_2$$

Appearance	Yellow Liquid
Composition	Butyl-NENA: 60-100% Metyl-nitroaniline: 0-1%
Density (g/cm ³)	1.2
Molecular Mass	207
Temperature of Decomposition (°C)	210
Melting Point (°C)	-27
Heat of Formation (kJ/mol)	-192
Heat of Explosion (J/g)	1083

Energetic Plasticisers (2)

BAE SYSTEMS

GAPA

$$CH_{2}N_{3} \qquad x=7$$

$$I \qquad \qquad I$$

$$N_{3}-(CH_{2}-CHO-CH_{2}) - CH_{2}N_{3}$$

Glycidyl azide polymer azide oligomer

Appearance	Pale Yellow Liquid or slightly ambered
Density (g/cm ³)	1.27
Molecular Mass	805
Glass Transition (°C)	-69
Melting Point (°C)	-27
Heat of Form ation (kJ/m ol)	-227
Solubility	miscible with acetone and chlorinated solvents not miscible with water and aliphatic hydrocarbons

ROWANITE 8001

Appearance	Clear, yellow to medium orange liquid
Composition	Dinitroethylbenzene: 65% Trinitroethylbenzene: 35%
Density (g/cm³)	1.363 ± 0.003
Molecular Mass	209
Temperature of Ignition (°C)	240
Melting Point (°C)	-40
Oxygen Balance (%)	-53
Heat of Formation (kJ/m ol)	-402
Viscosity at 20°C (mPa.s)	38.5

NDIA IMEMT Symposium 2004

Candidate Selection

Performance Modelling (1)

BAE SYSTEMS

- Performance parameters modelled with In-house EXPERT computer programme based on the Kamlet Model
 - Determines detonation characteristics of energetic materials which consist of C, H, N and O only
 - Model predicts:
 - heat of detonation, gas evolved on detonation and average molecular mass of the evolved gaseous products
 - Model then gives predicted
 - Velocity of detonation and detonation pressure
- Modelling conducted on formulations with:
 - Solids loading range of 74 to 77% v/v
 - Plasticiser/polyNIMMO ratios of 70/30, 60/40 and 50/50
 - Three different plasticiser types (ButyINENA, K10 and GAPA)

Comparisons made with predictions for Octol 75/25 and PBXN-110

Performance Modelling (2)

BAE SYSTEMS

NDIA IMEMT Symposium 2004

Performance Modelling (3)

BAE SYSTEMS

NDIA IMEMT Symposium 2004

Performance Modelling (4)

BAE SYSTEMS

- All other factors (solids loading, polymer/plasticiser ratio) being equal predicted performance in terms of and follows following trend:
 - V of D: Butyl NENA > GAPA > ROWANITE 8001
 - P_{ci:} Butyl NENA > GAPA = ROWANITE 8001
- Conclusion (all other factors being equal) target performance level can be achieved with lower HMX solids loading with a Butyl NENA binder than with GAPA or ROWANITE 8001 binders
- Modelling results used to scope small scale formulation, processing and assessment programme
 - Different HMX blends evaluated and solids loading increased incrementally
 - Plasticiser/polymer ratio assessed for each plasticiser

Candidate Formulation Down-Selection

- GAPA plasticiser quickly eliminated as binders too viscous
 Resultant solids loading too low to achieve desired performance level
- Field of study reduced to Butyl NENA and ROWANITE 8001 formulations
 - Candidate formulations taken forward for screening tests
 - Butyl NENA plasticised Research Formulation designated RF-67-43
 - Solids loading level = 77% v/v (83.92% m/m) HMX
 - Predicted V of D = 8531 m/s
 - Predicted Detonation Pressure = 32.9 GPa
 - ROWANITE 8001 plasticised Research Formulation designated RF-67-49
 - Solids loading level = 76% v/v (82.17% m/m) HMX
 - Predicted V of D = 8437m/s
 - Predicted Detonation Pressure = 32.4 Gpa

Focus on assessment of Butyl NENA plasticised PBX designated RF-67-43

UNCLASSIFIED

BAE SYSTEMS

Processing

Processing Assessment (1)

BAE SYSTEMS

Small scale mixes were prepared using vertical incorporator

- initially 1.6Kg increasing to 5Kg
- Effect of formulation variables on process behaviour and end-of-mix (EOM) viscosity (all other factors being equal)
 - Solids loading level higher the solids loading, higher the EOM viscosity
 - Plasticiser type lower viscosity plasticiser yields a lower EOM viscosity
 - Polymer/plasticiser ratio
 - lower polymer/plasticiser yields a lower EOM viscosity
 - lower polymer/plasticiser ratio reduces mechanical strength
 - too high a plasticiser level can give rise to migration and exudation
 - Mixing temperature higher the mixing temperature, the lower the EOM viscosity (but must consider pot-life issues)

Assessment criteria

- End of mix viscosity (Brookfield viscometer)
- Pot-life; time taken to reach 20 kPoise (2kPa.s)
- Cure Time; time to reach constant Shore A hardness
- Cured charge quality; density & % Theoretical Maximum Density (TMD)
- Thermal stability; DSC with sample maintained at 80°C for 4 hours

Processing Assessment (2)

BAE SYSTEMS

HKV5 High Shear Mixer

Viscosity Measurement

Processing Assessment (3)

BAE SYSTEMS

NDIA IMEMT Symposium 2004

RF-67-43 Thermal Properties

NDIA IMEMT Symposium 2004

Thermal Properties Assessment (1)

NAVSEA INDIAN HEAD

BAE SYSTEMS

Vacuum Stability

- 100°C for 48 hours (MIL-STD-1751A method 1061)
- Pass criterion: 2 ml of gas / gram of sample maximum
 Result = 0.16 ml of gas / gram of sample
- DSC
 - Heating samples from 30°C to 400°C at a rate of 10°C per minute
 - Major Exotherm = 275.84°C
 - Minor Exotherm = 185.48°C

^exo	RF-67-43	LSN A220
NW Method: Explos 40 30.0-400.0°C Remarks: Sample PEX.Composition RF-67-43 RF-67-43 RF-67-43	RF-67-43 ive Analysis New 10.00°C/min e purged 0 00ml/min ³⁰ Sample K, LNN A220, 28.05.2002 10:50:54 Sample E, LNN A220, 2.7000 mg	Major Exotherm (HMX Degradation) = 275.64°C
25-		N
15		
-5-40 60	Minor Endotherm (HMX Phase Change)=	185.49°C.

Thermal Properties Assessment (2)

BAE SYSTEMS

Glass Transition Temperature using DSC

- Heating samples from -150°C to 30°C at a rate of 10°C per minute
- PBX below this temperature will become Hard and Brittle
- Glass Transition Temperature, Tg ~ -69.0°C (92.9°F)

NDIA IMEMT Symposium 2004

RF- 67- 43 Physical & Mechanical Properties

NDIA IMEMT Symposium 2004

Physical Properties Assessment

BAE SYSTEMS

Density

- Density of cured explosive is measured using the oil displacement method
- Density of RF-67-43 = 1.74 g/cm^3 (99.6% TMD)

Shore A Hardness

- Shore A Hardness of RF-67-43 = 20-25

Mechanical Properties

- Maximum load (N), maximum stress (N/mm²), strain at maximum load (%), load at break (N), stress at break (N/mm²)
- 10 test pieces tested at ambient temperature to obtain an average result

Max Load	Max Stress	Strain at Max	Load at	Stress at Break
(N)	(N/mm²)	Load (%)	Break (N)	(N/mm²)
10.32	0.0839	25.15	5.419	0.0442

NDIA IMEMT Symposium 2004

RF-67-43 Small Scale Hazard Properties

NDIA IMEMT Symposium 2004

Sensitiveness to Mechanical Impact and Friction

BAE SYSTEMS

Rotter Impact Test (EMTAP Test No.1A)

Rotter Impact Testing Apparatus

Testing Mechanism

Mallet Friction Test (EMTAP Test No.2)

- Strike HE sample on steel surface with steel-tipped mallet (100 strikes); record Ignition (sparks or flame; a "crack" as some or all trace reacts)
- Sentencing criteria
 - No ignition
 - Up to six ignitions
 - More than six ignitions
- = 0% (frictionally insensitive)
- = 50% (frictionally insensitive)
- = 100% (very sensitive)

Summary of Small Scale Hazard Properties

BAE SYSTEMS

Test	EMTAP Test No.	Result
Sensitiveness to Mechanical Impact	1A	F of I = 90
Mallet Friction	2	50%
Rotary Friction	33	F of F = 5
Ignition by Electrostatic Spark	6	NO IGNITION AT 4.5J
Temperature of Ignition	3	200°C
Ease of Ignition	4	FAIL TO IGNITE
Behaviour on Inflammation	5	IGNITES AND SUPPORTS TRAIN STEADILY THROUGHOUT

RF-67-43 Shock Sensitiveness

NDIA IMEMT Symposium 2004

Comparative US/UK Shock Sensitiveness Assessment

- BAE SYSTEMS
- Shock sensitiveness as measured in the large scale gap test (LSGT) conducted as an initial assessment of vulnerability
 - Both UK and US test methods were carried out as they are not identical
- Both tests were performed in the Fast Event Facility (FEF) at RO Defence, Chorley with NSWC Indian Head personnel in attendance
 - NSWC supplied major hardware and booster pellets for the US test which were flown in from the US
- Parallel approach allowed comparative assessment of US and UK large scale gap tests techniques on the same explosive composition filled under identical conditions
- Close co-operation between US and UK assessment teams established

NDIA IMEMT Symposium 2004

Comparison of UK and US Large Scale Gap Test Configurations

BAE SYSTEMS

UK: EMTAP Test No.22

US: MIL-STD-1751A Method 1041 (NOL)

NDIA IMEMT Symposium 2004

Comparison of UK and US Large Scale Gap Test Results for RF-67-43

BAE SYSTEMS

	UK EMTAP Test No.22	MIL-STD-1751A Method 1041 (NOL)
Detonator	L2A1	ICI #8
Donor Pellet	1 off Tetryl (density = 1.5 g/cm ³)	2 off Pentolite (density = 1.56 g/cm ³)
Attentuator	PMMA	PMMA
Witness Plate	Mild Steel (10.00mm thick)	Mild Steel (9.53mm thick)
Sample Density	1.74 g/cm ³	1.74 g/cm ³
Result (50% Point)	39.4mm (155 cards)	41.1mm (162 cards)
Result (P _g)	~ 33.8 kbar	33.1 kbar
Other results for comparison	RDX/TNT Type A, 50% point ~ 199 cards P _g = 20 kbar	PBXN-110, 50% point ~ 154-178 cards $P_g = 27.0-36.8$ kbar Octol 85/15 50% point = 236 cards $P_g = 14.5$ kbar
Reference	EMTAP Manual Test No.22	NIMIC Excel Spreadsheet on Gap Tests version 1.3

RF-67-43 Performance

NDIA IMEMT Symposium 2004

Performance Assessment (1)

BAE SYSTEMS

Velocity of Detonation (unconfined)

- Test sample dimension = 25.4mm diameter × 227mm long
- density = 1.74 g/cm^3
- V of D measured by triggering ionisation probes (8 off 25mm apart)
- 6 firings carried out
- Mean Velocity of Detonation of RF-67-43
 - = 1% above PBXN-110*
 - = 0.2% below Octol 75/25*
- Predicted Detonation Pressure using the Cook Equation, $P = 0.00987 \times r \times D^2 / 4$
 - = 5.8% above PBXN-110*
 - = 4.3% below Octol 75/25*

* NIMIC EMC version 3.0

NDIA IMEMT Symposium 2004

UNCLASSIFIED

Performance Assessment (2)

BAE SYSTEMS

Cylinder Expansion

- MIL-STD-1751 (USAF) Method 16
- 5 firings carried out
- Density = 1.75 g/cm^3
- Mean Gurney Velocity (19mm) of RF-67-43
 - = 7% above PBXN-110*
 - = 5.4% above Octol 75/25*

NDIA IMEMT Symposium 2004

Summary

BAE SYSTEMS

 Close US/UK co-operation has been established on comparative testing techniques and assessment criteria for secondary explosives

- A comparison has been made of the properties and processing behaviour of a series of castable PBXs with polyNIMMO binder systems plasticised with butyl NENA, ROWANITE 8001 (K10) and GAPA
- A candidate PBX, designated RF-67-43, utilising a polyNIMMO binder plasticised with butyl NENA was down selected and has been successfully scaled up to 5kg batch size for assessment
- Processability and cure behaviour satisfactory
 - Mechanical properties adequate
 - Small scale hazard properties and thermal stability satisfactory
- Shock sensitiveness (from LSGT) on a par with PBXN-110, significantly lower than Octol
- Performance encouraging
 - Improvement over PBXN-110
 - Approaching that of Octol 75/25

NDIA IMEMT Symposium 2004

Acknowledgements

BAE SYSTEMS

This work package was conducted under the sponsorship of the US Navy's Insensitive Munitions Advanced Development - High Explosives (IMAD-HE) Program

NSWC Indian Head NAV58

- Karen Burrows
- Anh Duong
- Heather Gokee
- Al Gillis
- John O'Connor

BAE SYSTEMS Land Systems BAE SYSTEMS

- Dr Ian Murray
- Alan Watkins
- Gwyn Sayce
- Glascoed Laboratory
- Summerfield Laboratory
- Fast Event Facility

