

The Crystal Structure of Cyclotrimethylene-trinitramine

By C.S.Choi

Feltman Research Laboratory, Picatinny Arsenal, Dover, N. J. 07801, U.S.A., and Institute for Materials Research, National Bureau of Standards, Washington, D. C. 20234, U.S.A.

AND E. PRINCE

Institute for Materials Research, National Bureau of Standards, Washington, D. C. 20234, U.S.A.

(Received 10 April 1972 and in revised form 24 May 1972)

The structure of cyclotrimethylene-trinitramine (RDX), $C_3H_6N_6O_6$, has been refined from single-crystal neutron-diffraction data. The final weighted *R* index for 836 independent reflections is 0.021. The compound crystallizes in the orthorhombic space group *Pbca*, $a = 13 \cdot 182$ (2), $b = 11 \cdot 574$ (2), $c = 10 \cdot 709$ (2). Å, Z = 8. The molecule consists of alternate CH₂ and N–NO₂ groups in a puckered ring. The environment of the carbon atoms is essentially tetrahedral, and the N–NO₂ groups are planar. The molecule possesses a plane of approximate mirror symmetry perpendicular to the plane defined by the three carbon atoms. The thermal motion may be described by rigid-body motion of the ring and separate rigid-body motion of the nitro groups.

Introduction

= 11.606 6=13.201 Colo725

The compound cyclotrimethylene-trinitramine, $C_3H_6N_6O_6$, also known as Cyclonite, or by the code designation RDX, is a well known explosive. There are two known polymorphic forms, designated RDX(I) and RDX(II) (McCrone, 1950). The structure of RDX(II) has not been determined because of the difficulty of obtaining and preserving well formed crystals, even for short periods, owing to its extreme instability. This paper describes the refinement of the structure of RDX(I); it will be referred to hereafter simply as RDX.

The crystal structure of RDX was first investigated by Hultgren (1936). He reported that it possesses orthorhombic symmetry, with eight molecules per unit cell and most probable space group $V_h^{15}(Pbca)$. A complete crystal morphology has been reported by Mc-Crone (1950). The crystal structure of RDX was reinvestigated by Harris & Reed (1959) using three-dimensional X-ray photographic data. They determined the complete crystal structure except for the hydrogen positions. The present study was undertaken to complete the crystal structure by determining the hydrogen positions and refining overall structural details.

Experimental

The unit-cell dimensions were determined by a leastsquares fit to scattering angles measured by X-ray diffraction. For this, the scattering angles (2θ) of the 30 most intense reflections having scattering angles in the range 35 to 60° were measured on an automated Picker 4-circle diffractometer with Mo K α radiation monochromated by a pyrolytic graphite plate. The unit-cell dimensions thus obtained are, $a=13\cdot182$ (2), $b=11\cdot574$ (2), $c=10\cdot709$ (2) Å, and $D_x=1\cdot806$. The observed density is reported as $D_m = 1.816$ (Federoff & Sheffield, 1966) and the melting point is 205 °C (McCrone, 1950).

A crystal, approximately $1.4 \times 1.2 \times 0.9$ mm, was used for this experiment. The crystal was mounted on a four-circle neutron diffractometer controlled by a computer (Alperin & Prince, 1970). The crystal was oriented with its a axis nearly, but not exactly, parallel to the φ axis, in order to avoid systematic effects due to multiple diffraction. The diffraction intensities were measured by the procedure described by Prince (1972). With a neutron wavelength of 1.232 Å and a limiting 2θ angle of 100° there are 1590 independent reflections. The intensity at the peak position of each reflection was compared with the intensities at background positions on either side, and if the peak intensity (I_p) did not exceed background (I_b) by 2σ , where σ is given by $\sigma = (I_p + I_b)^{1/2}$, the reflection was considered to be unobserved. 836 of the 1590 independent reflections had observable intensities. The intensities of all observed reflections were converted to relative structure factors and each was assigned a standard deviation, σ_F , based on counting statistics. The calculated linear absorption coefficient is 1.2 cm⁻¹, assuming an effective incoherent scattering cross-section for hydrogen of $42 \times$ 10⁻²⁴ cm² (Rush, Taylor & Havens, 1962). The maximum variation in F due to absorption is less than ± 0.8 %. This was considered to be negligible, and no absorption corrections were made.

The positional parameters for the heavy atoms, as determined by Harris & Reed (1959), were used to compute signs for F_o and $(F_o - F_c)$ Fourier syntheses. All hydrogen atom positions were determined from the difference synthesis. Three cycles of least-squares refinement with the program *RFINE* (Finger, 1968) with isotropic temperature factors, gave a weighted *R* index $\{wR = [\sum w(s|F_o| - |F_c|)^2 / \sum wF_c^2]^{1/2}$ where *s* is the scale factor and $w = 1/\sigma_F^2\}$ of 0.093. The refinement was continued

Pe = 1.795

CRYSTAL STRUCTURE OF CYCLOTRIMETHYLENE-TRINITRAMINE

with anisotropic temperature factors for all atoms. An isotropic secondary extinction parameter, S, was included in the refinement, using the formula (Zachariasen, 1968) $F_{cor} = |F_c|(1 + S\beta F_c^2)^{-1/4}$, where β is a parameter proportional to the Lorentz factor. The final value of S was 0.484×10^{-3} for $\beta = 1/\sin 2\theta$. The two strongest reflections, 102 and 200, with calculated extinction factors of 0.7282 and 0.7275 respectively, were omitted from the final stage of refinement because of severe extinction. The final discrepancy indices were wR =0.021 and R = 0.039 for all observed reflections except the two strongest reflections. The largest parameter shift in the last cycle was less than 0.01 of the standard deviation. The final least-squares parameters are given in Table 1, and the observed and calculated structure factors are listed in Table 2. There was no observable

where s is the number of reflections in a subset, for subsets of the observed reflections divided according to ranges of F and sin θ/λ . The difference Fourier map obtained after final least-squares refinement was featureless.

Discussion

The heavy atom positions obtained in the present work all agree well with those reported in the previous X-ray study of Harris & Reed (1959), with differences of less than 0.02 Å in bond length and 0.8° in bond angle. The interatomic distances and angles in the RDX molecule, as obtained in the present study, are given in Table 3. The molecule of RDX consists of three N-NO₂ groups linked to three methylene groups alternately to form a puckered, six-membered C-N ring trend in the values of the function $1/s\sum_s w(|F_o| - |F_c|)^2$, (see Figs. 1 and 2). The N(1)-NO₂ group is essentially

Table 1. Final least-squares parameters for the structure	of	F RDX
---	----	-------

Thermal parameters are the coefficients, B_{ij} (Å²),

in the form exp $\left[-\frac{1}{4}\left(B_{11}a^{*2}h^{2}+B_{22}b^{*2}k^{2}+B_{33}c^{*2}l^{2}+2B_{12}a^{*}b^{*}hk+2B_{13}a^{*}c^{*}hl+2B_{23}b^{*}c^{*}kl\right)\right]$

The estimated standard deviations are in parentheses.

	x/a (×104)	y/b (×104)	z/c (×104)	B_{11} (×10 ²)	B_{22} (×10 ²)	B_{33} (×10 ²)	B_{12} (×10 ²)	B_{13} (×10 ²)	B_{23} (×10 ²)
C(1)	1839 (3)	3578 (3)	4400 (3)	322 (15)	297 (13)	206 (14)	-70(13)	-69(11)	7 (12)
C(2)	503 (2)	2440 (2)	3395 (3)	233 (15)	145 (11)	344 (13)	8 (13)	-1(13)	-17(11)
C(3)	1487 (2)	3813 (3)	2159 (3)	252 (14)	332 (16)	175 (14)	-34(13)	34 (11)	-31(12)
N(1)	1761 (2)	4360 (2)	3330 (2)	267 (8)	266 (8)	251 (9)	-109(8)	1 (8)	0 (8)
N(2)	877 (2)	2996 (2)	4537 (2)	295 (9)	210 (8)	250 (9)	14 (8)	33 (8)	9 (7)
N(3)	536 (1)	3222 (2)	2329 (2)	211 (9)	228 (8)	274 (9)	15 (8)	-35(7)	-37(7)
N(4)	2260 (2)	5379 (2)	3346 (2)	217 (8)	241 (9)	348 (10)	- 55 (8)	79 (9)	-26(9)
N(5)	155 (2)	3525 (2)	5294 (2)	455 (14)	322 (10)	256 (10)	157 (10)	104 (9)	77 (9)
N(6)	-333 (2)	3875 (2)	2078 (2)	284 (11)	306 (10)	316 (10)	72 (9)	-72(9)	- 53 (8)
O(1)	2270 (3)	5932 (3)	2388 (4)	566 (23)	330 (17)	407 (19)	-122(18)	82 (17)	68 (16)
O(2)	2649 (3)	5687 (3)	4338 (4)	342 (16)	330 (17)	417 (19)	-86(15)	-13(16)	-131(14)
O(3)	- 693 (3)	3142 (4)	5262 (4)	333 (21)	718 (26)	426 (20)	138 (21)	153 (17)	156 (19)
O(4)	454 (4)	4271 (3)	5990 (3)	894 (32)	381 (21)	258 (16)	251 (22)	57 (20)	-53(15)
O(5)	-1121(3)	3534 (4)	2504 (4)	246 (16)	572 (25)	584 (25)	44 (17)	-62(16)	22 (21)
O(6)	-236(4)	4691 (4)	1390 (4)	644 (27)	441 (23)	415 (20)	185 (21)	-91 (20)	62 (18)
H(1)	2401 (6)	2944 (7)	4226 (7)	372 (33)	532 (36)	564 (37)	-14 (30)	-128 (31)	141 (32)
H(2)	2013 (6)	4068 (6)	5244 (6)	762 (43)	560 (37)	270 (29)	-201 (34)	-127 (29)	- 59 (28)
H(3)	-261(5)	2117 (6)	3540 (6)	371 (34)	433 (33)	597 (35)	-146 (29)	-18(31)	16 (27)
H(4)	1015 (5)	1728 (5)	3192 (7)	464 (30)	263 (26)	594 (37)	89 (27)	-16 (27)	-114(27)
H(5)	2052 (5)	3166 (6)	1917 (6)	314 (28)	602 (37)	524 (37)	46 (30)	80 (25)	-225 (30)
H(6)	1440 (6)	4432 (7)	1413 (7)	637 (44)	602 (39)	363 (35)	-170(35)	17(28)	108 (31)

Fig. 1. RDX molecule showing a stereoscopic pair viewed from top of the molecular ring,

coplanar but the $N(2)-NO_2$ and $N(3)-NO_2$ groups are slightly bent. The distances of atoms from the best fit mean plane of each $N-NO_2$ group are given in Table 4. The bond lengths and bond angles of the N(2)-

A C 28B - 15

 NO_2 and $N(3)-NO_2$ groups are very similar but the configuration of the $N(1)-NO_2$ group is quite different. For the $N(1)-NO_2$ group, the N-N distance is shorter by approximately 0.04 Å, and the C-N-N angles are

Table 2. Observed and calculated structure factors for RDX Unobserved reflections are indicated by an asterisk.

$\begin{array}{c} + i \cdot 0 \cdot 0 \\ + i \cdot 0 \cdot 0 \\ 2 & 5 \\ + & 5 \\ 0 & 103 \\ 0 & 103 \\ 12 & 728 \\ 12 & 728 \\ 12 & 728 \\ 11 \\ 12 & 728 \\ 12 & 728 \\ 12 & 728 \\ 12 & 728 \\ 12 & 728 \\ 13 & 728 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 1$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H 11.11 1 73.* -33 2 123 13 2 123 13 2 123 12 3 125 12 3 125 12 3 125 12 1 172	$\begin{array}{c} \mathbf{s} & 1 \\ \mathbf{s} & 1 \\ \mathbf{s} & \mathbf{s} \\ \mathbf{s} & \mathbf{s} \\ $	$\begin{smallmatrix} & 5.8 & 5.8 \\ & 5.8 & 5.6 \\ & 6.6 & 6.0 \\ & 7.0 & 7.0 $	3 7** 26 132 -127 5 132 -127 5 175 104 0 496 49 1 305 -127 5 204 0 496 49 1 305 -126 5 2170 170 5 2170 170 2 407 10	$\begin{array}{c} 7 & 130 \\ 6 & 724 \\ 754$	$\begin{array}{c} * \ 72^{*} \ 55 \\ 347 \ 348 \ 6 \ 324 \ -328 \ 121 \ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mu_{1,2}, \theta_{2} \\ 1 \\ 200, 307 \\ 2 \\ 306 \\ -307 \\ 2 \\ 306 \\ -307 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ccccc} H_{1}^{-3}, 0 \\ 2 & 76 \\ 2 & 76 \\ 2 & 75 \\ 2 & 75 \\ 2 & 75 \\ 2 & 75 \\ 2 & 75 \\ 1 & 35 \\ 1 & 35 \\ 1 & 35 \\ 1 & 35 \\ 2 & 55 \\ 1 & 35 \\ 2 & 55 \\ 1 & 35 \\ 2 & 75 \\ 1 & 75 \\ 2 & 121 \\ 1 & 75 \\ 2 & 121 \\ 1 & 75 \\ 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} +1 +1 +1 \\ 0 & 166 & -163 \\ 1 & 37 & 60 \\ 2 & 38 & -18 \\ 3 & 132 & 135 \\ +0 02 \\ 3 & 132 & 135 \\ +0 02 \\ 5 & 74 & 543 \\ 15 & 27 \\ 4 & 543 \\ 2 & 27 \\ 4 & 75 \\ 2 & 24 \\ 2 & 21 \\ 7 & 374 \\ -56 \\ 6 & 564 \\ 10 \\ 6 & 664 \\ 10 \\ 6 & 668 \\ 10 \\ 6 & 668 \\ 10 \\ 12 \\ 3 & 73 \\ 10 \\ 12 \\ 3 & 73 \\ 10 \\ 15 \\ 15 \\ 3 & 78 \\ 10 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} ++5\cdot 5\\ 1 & 57 & 77\\ 2 & 112 & -119\\ 3 & 50 & -10\\ 3 & 50 & -10\\ 4 & 165 & -165\\ 6 & 155 & -165\\ 6 & 155 & -165\\ 7 & 161 & -174\\ 8 & 230 & -233\\ 10 & 70 & -13\\ 10 & 70 & -13\\ 10 & 174$	0 67* 81 11 71* 81 12 80* 84 13 85* -56 15 125 -110 14 21* -105 15 125 -110 14 21* -105 15 125 -105 1206 -207 126 130 -50* 12 150 -105 5 10 75* 47 10 75* 47 10 75* -37 10 75* -37 11 75* -37 12 78* -37* 12 78* -37* 12 78* -37* 12 92*<-80*		5 159 157 6 92 -107 6 92 -108 9 71 82 9 71 82 1 78 82 1 78 82 9 71 82 1 78 82 1 78 82 9 71 82 1 78 78 82 1 78 78 82 1 78 78 78 78 78 78 78 78 78 78 78 78 78	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} H(*,9)\\ 0 & 33.* & 19\\ 0 & 33.* & 19\\ 1 & 6.7* & 1.5\\ 3 & 126. & 1.5\\ 3 & 126. & 1.5\\ 3 & 126. & 1.5\\ 1 & 109 & 157\\ 8 & 009 & -538\\ 9 & 158 & 151\\ 11 & 129 & 1.22\\ 128 & 009 & -58\\ 11 & 129 & 1.22\\ 128 & 009 & -58\\ 11 & 129 & 1.22\\ 128 & 009 & -58\\ 11 & 129 & 1.22\\ 128 & 009 & -58\\ 11 & 129 & 1.22\\ 128 & 009 & -58\\ 11 & 110 & 00\\ 110 & 000 & -58\\ 111 & 110\\ 0 & 022 & 97\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} {}^{6} 500 & 470 \\ 5187 - 125 & -22 \\ 225 & -22 \\ 486 & 470 \\ 225 & -22 \\ 9140 & 136 \\ 10 & 714 & 456 \\ 11 & 368 & -20 \\ 13 & 146 & 128 \\ 13 & 146 & -22 \\ 14 & 768 & -27 \\ 1106 & 103 \\ 241 & 234 \\ 3 & 279 & -273 \\ 3 & 279 & -273 \\ 5 & 681 \\ 80 & 770 & 107 \\ 8 & 150 & -157 \\ 9210 & 105 \\ 70 & 107 \\ 8 & 150 & -157 \\ 9210 & 107 \\ 8 & 100 \\ $	$\begin{array}{c} ++1, 1, 2\\ ++1, 1, 2\\ 1 & 165, -101 \\ 3 & 336, -332 \\ 76, 69\\ 5 & 57*, -22\\ 6 & 69\\ 1 & 259\\ 2 & 261\\ 1 & 259\\ 2 & 261\\ 1 & 235, -239\\ 1 & 235, -239\\ 1 & 235, -239\\ 1 & 235, -239\\ 1 & 235, -239\\ 2 & 268, -39\\ 2 & 258, -39\\ 2 & 288, -39\\ 2 & 288, -39\\ 2 & 288, -39\\ 2 & 288, -39\\ 2 & 288, -39\\ 2 & 359, -400\\ 3 & 59\\ -57, -73\\ 3 & 59\\ -73\\ 2 & 56, -73\\ 3 & 56\\ -73\\ 3 & 56\\ -73\\ 3 & 56\\ -73\\ 3 & 56\\ -73\\ -73\\ -73\\ -73\\ -73\\ -73\\ -73\\ -73$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 \ 109 \ 10'' \\ 9 \ 106 \ 105 \ 90 \\ 11 \ 80^{\circ} - 105 \ 90 \\ 11 \ 80^{\circ} - 10^{\circ} \\ 12 \ 70^{\circ} - 60 \\ 13 \ 41^{\circ} \ 82^{\circ} - 60 \\ 14 \ 42^{\circ} \ - 60 \\ 14 \ 42^{\circ} \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \\ 12 \ - 60 \ - 60 \\ 12 \ - 60 \ - 60 \ - 60 \\ 12 \ - 60 \ - $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7.78 -1.2 3 7.78 -2.8 4 0.00 -3.3 H:15 -3.3 H:15 -1.82 3 9.3 -7.7 4 1.7 1.86 5 5.76 -2.9 7 1.93 1.33 10 1.53 -1.61 11 1.00 1.53 11 1.00 1.54 12 7.76 -1.12 14 1.02 -1.14 14 1.25 -1.14 14 1.25 -1.14 15 1.55 -7.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mathbf{x} = 21 + \mathbf{x} = 21 +$	7 20% -20% -20% 9 82% -2% 9 82% -2% 10 76% -8% 11 78% -8% 11 78% -8% 11 78% -5% 2 581 -178 3 156 -175 5 165 -165 5 165 -165 5 165 -165 6 73% -2% 10 39% -2% 10 39% -2% 10 39% -2% 10 39% -2% 10 39% -2% 10 39% -2% 10 39% -2% 10 39% -2% 10 3% -2% 10 3% 10 3% -2% 10 3% 10 3% 10 3% 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 / 35 - 440 7 / 85 - 410 7 / 8 / 73 - 53 1 / 8 / 9 0 / 75 - 55 2 / 35 - 17 3 / 75 - 75 3 / 75 - 77 8 / 33 - 29 5 / 19 - 140 H - 15 2 / 10 - 140 H - 15 H - 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 74 68 0 80 80 78 H:12 22 0 80 80 78 H:12 22 78 -55 1 82 -56 2 78 -53 3 78 -53 3 78 -53 3 78 -53 3 78 -53 5 69 -71 6 40 121 7 74 63 8 173 164 H:15 22 1 77 -0 3 182 133 5 136 139 H:14 20 3 12 21 3 139 1 32 25 3 139 1 39 2 25 21 3 139 1 39 2 31 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 15% -168 2 73° -68 3 35% -165 3 56% -58 5 75% -28 6 73* -21 7 38% -156 9 38% -10 8 38% -10 10 85% -20 H1076 0 24% -20 H1076 0 24% -20 H1076 0 24% -20 H1076 0 24% -20 H1076 0 24% -20 H1076 0 24% -20 H1076 0 32% -168 1 37% -89 H1176 1 79% -81 0 50 1 79% -81 1 79% -91 1 79% -91 1 79% -91 1 79% -91 1 79% -91 1 79% -91	$\begin{array}{c} 5 \ 162 \ -155 \ 078 \ $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} ++5,11\\ 1&75+8\\ 3&64+87\\ 2&64+87\\ 3&84+87\\ 3&84+87\\ 3&84+104\\ 5&52+63\\ 5&52+63\\ 5&54+102\\ 1&75+86\\ 2&84+102\\ 2&84+102\\ 2&84+102\\ 3&77+3\\ 3&85+8\\ 3&77+11\\ 1&77+8\\ 2&84+87\\ 3&85+82\\ 3&85+$
$ \begin{array}{c} & 0.1* & -20 \\ 6 & 511 & 521 \\ 8 & 192 & 175 \\ 10 & 1592 & 175 \\ 10 & 1591 & 175 \\ 10 & 1591 & 175 \\ 2 & 1211 & 126 \\ 1 & 771 & -76 \\ 2 & 1211 & 126 \\ 1 & 781 & 126 \\ 1 & 781 & 156 \\ 8 & 377 & -205 \\ 2 & 101 & 156 \\ 8 & 377 & -205 \\ 2 & 101 & 156 \\ 8 & 277 & -205 \\ 758 & -581 \\ 1 & 758 & -681 \\ 2 & 758 & -681 \\ 1 & 263 & 261 \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H 575 - 5 H 4+2 0 202 200 2 2 200 2 2 2 00 2 2 1 103 95 2 2 17 218 9 2 15 - 218 9 2 15 - 218 9 2 15 - 218 9 5 - 10 10 95 - 56 11 65 - 27 15 119 15 119 15 109 15 119 15 119	2 134 141 H:1/3 1 221 219 2 52 -35 5 77 -26 5 136 -143 1 251 219 2 52 -35 5 7 -26 5 136 -143 1 231 233 1 235 25 1 341 -92 1 4 93 -74 1 5 76 98 H:2/3 0 490 -488 1 144 151 2 455 -446	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 84 -60 H-6+4 0 1.5 0 1.3 3.9 1.5 1 2.30 1.5 1.5 3 3.9 1.6 1.7 1.7 5 70* 7.1 -4 7.1 -4 7 2.7 2.26 6.7* -2.29 9 7.0 7.27 2.0 7.27 2.0 1.2 2.0 7.0 7.27 2.0 7.0 7.27 2.0 7.0 7.27 2.0 7.0 7.27 2.0 7.0 7.27 2.0 7.0 7.27 2.0 7.0 7.27 7.20 7.27 7.20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 5.3 -3.4 7 100 9.4 1 7.6 7.0 3 7.6 7.6 3 7.6 7.6 3 7.6 7.6 1.6 1.6 1.6 4 1.6 1.0 5 7.5 1.6 H'12.7 0 5.75 0 5.6 2.5 1.06 0.60 2.5 1.08 0.60 2.0 2.199 2.00 2.199 3 1.0 1.12 5 7.0 1.2 5 7.0 1.2 5 7.0 1.2 6 1.00 -1.3 6 1.00 -1.6	$\begin{array}{ccccc} H+10rB \\ 0 & 35^{\circ} & 85 \\ 1 & 72^{\circ} & -52 \\ 2 & 211 & -21^{\circ} \\ 3 & 73^{\circ} & 71 \\ 7 & 73^{\circ} & 73^{\circ} \\ 5 & 75^{\circ} & -30 \\ 5 & 75^{\circ} & -30 \\ 5 & 75^{\circ} & -30 \\ 1 & 74^{\circ} & 20 \\ 2 & 75^{\circ} & -32 \\ 3 & 40^{\circ} & 35 \\ H'11rB \\ 1 & 74^{\circ} & 20 \\ 2 & 75^{\circ} & -28^{\circ} \\ 2 & 71^{\circ} & -28 \\ 3 & 20^{\circ} & 278 \\ 4 & 30^{\circ} & 278 \\ 3 & 20^{\circ} & 278 \\ 4 & 30^{\circ} & 218 \\ 4 & 30^{\circ} & 278 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$3 53^{8} - 99$ 4 71 - 66 $5 60^{8} 22$ $6 68^{8} 36$ 7 131 138 $8 151 - 15^{8}$ 9 87 - 103 10 376 379 $11 39^{8} 40$ 12 157 155 $13 81^{8} 47$ $15 83^{8} - 118$ $H_{13} 53$ 1 398 - 392 2 191 - 187 $3 57^{8} 39$	/ 000 -59 8 720 17 9 83 52 H+12+3 0 740 39 1 111 -93 3 113 78 4 755 34 5 140 147 6 390 -86 7 103 107 8 100 126 H+13+3 1 92 -65 2 730 -7	$\begin{array}{c} \begin{array}{c} 2 & 1 & 1 & -1 & 2 \\ 2 & 1 & 0 & -1 & 0 \\ 7 & 3 & 1 & 5 & -3 & 1 \\ 8 & 7 & 4 & 3 \\ 9 & 1 & 2 & 1 & 3 \\ 1 & 1 & 2 & 1 & 3 \\ 1 & 1 & 7 & 5 & -7 & 1 \\ 2 & 8 & 5 & 7 & 1 \\ 1 & 8 & 4 & 8 & 3 \\ 1 & 1 & 7 & 5 & -7 & 1 \\ 1 & 3 & 4 & 8 & 3 \\ 1 & 1 & 0 & 4 & 1 \\ 1 & 1 & 0 & 4 & 1 \\ 1 & 1 & 0 & 4 & 1 \\ 1 & 1 & 0 & 4 & 1 \\ 1 & 1 & 0 & 4 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0$	$\begin{array}{c} c & c > 0 \\ 3 & 6 & 3 \\ 6 & 7 \\ 3 & 6 & 7 \\ 5 & 107 \\ 107 \\ 117 \\ 6 & 153 \\ 10 \\ 153 \\ 10 \\ 155 \\ 10 \\ 155 \\ 10 \\ 155 \\ 10 \\ 155 \\ 10 \\ 155 \\ 10 \\ 10$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c} 8 & 128 & 127 \\ 9 & 99 & -101 \\ 10 & 75* & -14 \\ 11 & 327 & -320 \\ 12 & 87* & -79 \\ \hline +1:16 & 1245 \\ 2 & 161 & 162 \\ 3 & 119 & -123 \\ 4 & 115 & -111 \\ 5 & 129 & -124 \\ 6 & 100 & -110 \\ 8 & 119 & -124 \\ 9 & 286 & -297 \\ 10 & 86* & -135 \\ 11 & 76* & -82 \\ \end{array} $	$\begin{array}{c} 9 \ 102 \ 94 \\ 10 \ 77* \ -17 \\ 11 \ 77* \ 21 \\ \\ \mu_{*2} \cdot 9 \\ 0 \ 89 \ -93 \\ 1 \ 196 \ 201 \\ 1 \ 25 \ -123 \\ 3 \ 164 \ 171 \\ 8 \ 80* \ -90 \\ 5 \ 281 \ -287 \\ 6 \ 156 \\ 8 \ 22* \ -88 \\ 9 \ 195 \ -176 \\ 10 \ 78* \ 23 \\ 11 \ 83* \ -123 \end{array}$	/ 141 -150 8 00* 86 9 83* 79 124 -129 1 74* -13 1 74* -13 7 14* -15 9 71* 5 9 71* 5 9 71* 5 9 75* -102 5 63* -29 9 60* 37 H:5510 1 155 165	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

larger by more than 3° . The mean plane of the N(1)-NO₂ group is inclined to the plane defined by the three carbon atoms by only 18°, but the N(2)– NO_2 and N(3)– NO_2 planes are both inclined by 62°. Thus the trigonal molecular symmetry, which might be expected in the free RDX molecule, is not observed in the crystalline state, but there is a pseudo mirror plane passing through the atoms N(4), N(1), C(2), H(3), and H(4). These atoms are essentially coplanar with the plane defined by 0.1869x - 0.1101y + 0.9762z = 3.3648. The atomic distances from the pseudo mirror plane and the inclination angles of the interatomic vectors between the two pseudo mirror symmetric atoms are summarized in Table 5. Only oxygen atoms show significant departures from the mirror symmetric positions. All the pseudosymmetry-related bond lengths and angles in a molecule agree within two standard deviations, with the exception of the N-N-C angles, which disagree by at most 1.5° .

Table	3.	Interatomic	distances	and	angles	in	RDX
-------	----	-------------	-----------	-----	--------	----	-----

(a) Distances			
C(1)-N(1) = 1	·464 (4) Å	N(1) - N(4)	1.351 (3) Å
C(1)-N(2) = 1	443 (4)	N(2) - N(5)	1.392 (3)
C(2)-N(3) = 1	468 (4)	N(3) - N(6)	1.398(3)
C(2) - N(3) = 1	458 (4)		
C(3) - N(3) = 1	440 (4)	N(4) - O(1)	1.209 (5)
C(3) - N(1) = 1	450 (4)	N(4) - O(2)	1.233 (4)
		N(5)-O(3) .	1.203 (5)
C(1)-H(1) = 1	058 (10)	N(5)-O(4)	1.207 (5)
C(1)-H(2) = 1	092 (8)	N(6) - O(5)	1.201 (5)
C(2)-H(3) 1.	085 (8)	N(6)–O(6)	1.205 (5)
C(2)-H(4) 1.	087 (7)		
C(3)-H(5) = 1	088 (8)		
C(3)-H(6) 1.	075 (9)		
(b) Angles			
N(1) - C(1) - N(2)	107.8 (2)°	C(3) = N(1) = C(1)	$115.1(2)^{\circ}$
N(1)-C(1)-H(2) N(1)-C(1)-H(1)	109.9(4)	C(3) N(1) - N(4)	120.9(2)
N(1)-C(1)-H(2)	1000(4)	C(1) - N(1) - N(4)	119.7(2)
N(2) - C(1) - H(1)	108.0(4)	N(1) - N(4) - O(1)	117.2(3)
N(2) - C(1) - H(2)	110.0(5)	N(1) - N(4) - O(2)	117.8(3)
H(1)-C(1)-H(2)	1100(6)	O(1) N(4) - O(2)	125.0(3)
$\Pi(1) - C(1) - \Pi(2)$	111 0 (0)	0(1) 11(4) 0(2)	125 0 (5)
N(2)-C(2)-N(3)	111.7 (2)	C(1)-N(2)-C(2)	114.6 (2)
N(2)-C(2)-H(3)	110.1 (4)	C(1) - N(2) - N(5)	117.1(2)
N(2)-C(2)-H(4)	106.9 (4)	C(2) - N(2) - N(5)	116.6 (2)
N(3)-C(2)-H(3)	110.7 (4)	N(2)-N(5)-O(3)	117.2(3)
N(3)-C(2)-H(4)	107.2 (4)	N(2) - N(5) - O(4)	116.8(3)
H(3)-C(2)-H(4)	110.1 (6)	O(3) - N(5) - O(4)	125.7 (4)
N(3)-C(3)-N(1)	108.4 (2)	C(2)-N(3)-C(3)	114.8 (2)
N(3)-C(3)-H(5)	107.4(4)	C(2) - N(3) - N(6)	117.5 (2)
N(3)-C(3)-H(6)	111.1 (4)	C(3) - N(3) - N(6)	115.6 (2)
N(1)-C(3)-H(5)	109.6 (4)	N(3)-N(6)-O(5)	117.3 (3)
N(1)-C(3)-H(6)	111.3 (5)	N(3)-N(6)-O(6)	117.0 (3)
H(5)-C(3)-H(6)	108.8 (6)	O(5) - N(6) - O(6)	125.5 (4)

The methylene groups have essentially tetrahedral configurations, with the bond angles in the range of $109.5 \pm 2^{\circ}$, and the H–C–H planes perpendicular to the N–C–N planes. The C–H bonds range from 1.06 to 1.09 Å. When corrections for the thermal vibrations are applied by the riding model, they increase to between 1.09 and 1.13 Å.

Table 4. The atomic distances from the best-fit mean planes of N-NO₂ groups

The mean	planes are:				
0.8473x	-0.4601y	-0.2	2654z = -1.2993	for	$N(1)-NO_2$
0.2116x	-0.6696y	+0.7	120z = 1.3744	for	$N(2)-NO_2$
-0.1646x	-0.5725y	-0.8	3032z = -4.2606	for	$N(3)-NO_2$.
	N(1)-1	NO_2	$N(2)-NO_2$	N(3	$)-NO_2$
N(1)	-0.0	02			
N(4)	0.0	08			
O(1)	-0.0	03			
O(2)	-0.0	03			
N(2)			0.007		
N(5)			-0.026		
O(3)			0.010		
O(4)			0.009		
N(3)					0.006
N(6)					0.022
O(5)					0.008
O(6)					0.008
C(1)	0.1	98	-0.580		
C(2)			-0.536		0.386
C(3)	0.3	16			0.446

Table 5. Atomic distances fro	m the pseudo n	mirror pl	ane
-------------------------------	----------------	-----------	-----

Aton	ns in plane	Symmetry-related atom pair					
	Distances		Dista	nces	Angle		
N(4)	−0.005 Å	$C(1) \cdots C(3)$	−1·23 Å	1·23 Å	90°		
N(1)	0.006	$N(2) \cdots N(3)$	-1.21	1.21	90		
C(2)	0.003	$N(5) \cdots N(6)$	-1.76	1.77	89		
H(3)	-0.002	$O(2) \cdots O(1)$	-1.10	1.07	87		
H(4)	-0.002	$O(3) \cdots O(5)$	-1.56	1.47	88		
.,		$O(4) \cdots O(6)$	-2.46	2.57	89		
		$H(1) \cdots H(5)$	-1.27	1.26	90		
		$H(2) \cdots H(6)$	-2.09	2.10	90		

One hydrogen atom in each methylene group is always located very close to oxygen atoms of adjacent nitro groups on both sides, with the distances ranging from 2.22 to 2.30 Å. The C...O intramolecular distances are also short, ranging from 2.63 to 2.68 Å. Although the C-H...O angles, $99 \pm 1^{\circ}$, are much smaller than those in conventional hydrogen bonds, the oxygen atoms of the nitro-groups are bound tightly to the molecular ring by strong O...H as well as O...C inter-

Fig. 2. Side view of the RDX molecule.

actions and tend to form approximately planar C₂N-NO₂ groups. Consequently, we may expect to find some degree of rigidity in the RDX molecule. The rigid body motion analysis by the method of Schomaker & Trueblood (1968) was applied to all the heavy atoms of the molecule, as shown in Table 6. The r.m.s. DELTA U(I,J) was 0.008 Å² and the e.s.d. of the DELTA U(I,J) was 0.009. The disagreement with rigid-body molecular motion was greatest for the nitro group atoms. When the rigid-body analysis was applied to the ring atoms alone, the agreement was excellent; the r.m.s. DELTA U(I,J) was 0.0013 Å² and the e.s.d. of the DELTA U(I,J) was 0.0019. These facts may suggest that each nitro group possesses an independent libration superimposed upon the molecular libration, as is observed in the other nitro compounds, cyclotetramethylene tetranitramine (Choi & Boutin, 1970) and s-trinitrobenzene (Choi & Abel; 1972). The principal axis of the largest molecular libration lies almost exactly on the pseudo mirror plane, and has inclination angles of 34° with the N(1)-N(4) bond and 56° with both the other N-N bonds. Rigid body motion analysis of the nitro group alone is not possible because of the indeterminacy which occurs in the case of planar groups with five or fewer atoms. However, an investigation of the thermal ellipsoids of the nitro-group atoms shows clear evidence of rigid body motion, as shown in Table 7. We define Cartesian coordinate axes (radial, normal, and tangent) to which we refer the directions of the largest root-mean-square displacements, R_3 , separately for each atom. For each atom of a nitro group, the radial axis is directed from the ring nitrogen to which the nitro group is attached toward that atom, and the normal axis is perpendicular to both the radial axis and the $O \cdots O$ vector of the nitro group. The normal axis, as defined above, is approximately normal to the best fit mean plane of the N-NO₂ group, with angular deviations of less than 1.5° for all three groups. The largest thermal vibration amplitudes occur in the directions of tangential axes for all atoms except O(1) and O(5), where they are in the normal direction. The direction of the least vibration amplitude is always along the radial axis. This is consistent with rigid-body motion of the nitro group with two dominant modes, one about the normal axis passing through the ring nitrogen atom and the other about a radial axis somewhere near the N-N bond.

Table 6. Rigid-body motion analysis

(a) Rigid-bod $\mathbf{T} = \begin{pmatrix} 0.028 & 0.0 \\ 0.0 \end{pmatrix}$	y motion applie 0009 0.0030 0284 - 0.0005 0.0226	ed for all heavy $\mathbf{L} = \begin{pmatrix} 0.0031 \\ 0.0031 \end{pmatrix}$	y atoms 0.0004 0.0064	$\begin{pmatrix} 0.0010 \\ 0.0004 \\ 0.0039 \end{pmatrix}$
N Principal axes	of L (°) and th	eir direction c	osines	
4.6 3.8 2.8	$ \begin{array}{cccc} -0.0700 \\ -0.5736 \\ -0.8161 \end{array} $	0.9883 0.0711 - 0 0.1347	0·1352 0·8160 0·5620	
Displacements	s of libration a:	xes from the c	enter of r	nass (Å)
	$L_{1,2} = 0.057$ $L_{2,1} = -0.424$ $L_{3,1} = -0.505$	$L_{1,3} = -0 L_{2,3} = -0 L_{3,2} = -0 $	·261 ·490 ·705	
(b) Rigid-body	y motion applie	d for ring ato	ms alone	
$\mathbf{T} = \begin{pmatrix} 0.0216 & 0 \\ 0 & 0 \end{pmatrix}$	0.0015 0.0020 - 0.0042 0.0248	$\int \mathbf{L} = \begin{pmatrix} 0.0068 \\ 0 \end{pmatrix}$	0·0013 0·0086 —	$ \begin{pmatrix} 0.0009 \\ 0.0023 \\ 0.0083 \end{pmatrix} $
Principal axes	of L (°) and th	eir direction co	osines	
6·0 5·1 4·0	0.0988 0.7722 0.6276	$\begin{array}{rrrr} 0.7505 & -0 \\ 0.3563 & 0 \\ -0.5566 & -0 \end{array}$)·6535)·5260)·5443	
Displacements	of libration as	kes from the c	enter of n	nass (Å)
	$L_{1,2} = -0.289$ $L_{2,1} = -0.088$ $L_{3,1} = -0.229$	$L_{1,3} = 0$ $L_{2,3} = -0$ $L_{3,2} = -0$	163 512 025	

There are several short intermolecular distances in RDX. Those considered to be the most significant are shown in Fig. 3.

It may be interesting to compare the crystal structure of RDX with those of both α - and β -HMX (cyclotetramethylene-tetranitramine) (Cady, Larson & Cromer, 1963; Choi & Boutin, 1970), in view of the close similarity in chemical composition and explosive nature. The bond lengths and angles of RDX agree well with those of α - and β -HMX, except for the C-N-C angles, which are approximately 8° smaller in RDX than in HMX. In both compounds, the N-NO₂ group planes are bound tightly to the molecular ring by strong $O \cdots H$ as well as $O \cdots C$ interactions. The conformation of the N-NO₂ group attachment to the molecular ring in RDX is very similar to that of α -HMX. Very short intermolecular distances occur in both compounds.

References

ALPERIN, H. A. & PRINCE, E. (1970). J. Res. Natl. Bur. Stand. C74, 89.

	R_1	R_2	R_3	Radial	Normal	Tangent	В
N(4)	0.142 (4) Å	0·177 (3) Å	0·225 (3) Å	91°	73°	163°	2.69 Å2
0(1)	0.170(6)	0.238(5)	0.282(6)	95	31	120	4.34
O(2)	0.156 (7)	0.218 (6)	0.257 (5)	86	73	163	3.63
N(5)	0.161(4)	0.167 (4)	0.277 (4)	96	87	7	3.44
0(3)	0.167(6)	0.226(6)	0.329(6)	96	100	12	4.93
O(4)	0.158 (7)	0.207 (6)	0.356 (6)	87	91	3	5.11
N(6)	0.164(4)	0.181(3)	0.234 (3)	92	86	176	3.02
0(5)	0.170(6)	0.269(6)	0.276(6)	76	164	82	4.67
O(6)	0.183 (7)	0.246 (6)	0.310 (6)	88	107	163	5.00

Table 7. Principal axes of the thermal ellipsoids and orientations of the longest axes

A C 28B - 15*

Fig. 3. A diagram of the RDX molecule and some atoms of neighboring molecules showing short intermolecular distances.

CADY, H. H., LARSON, A. C. & CROMER, D. T. (1963). Acta Cryst. 16, 617.

CHOI, C. S. & ABEL, J. E. (1972). Acta Cryst. B28, 193.

CHOI, C. S. & BOUTIN, H. P. (1970). Acta Cryst. B26, 1235. FEDOROFF, B. T. & SHEFFIELD, O. E. (1966). Encyclopedia of Explosives and Related Items, Vol. 3. Picatinny Arsenal,

Dover, N.J. FINGER, L. W. (1968). Computer Programs for Least-Squares

Refinement, Fourier Summation, and Error Calculations. Geophysical Laboratory, Carnegie Institute of Washington, D.C. HARRIS, P. M. & REED, P. T. (1959). AFOSR-TR-59-165 Ohio State University Research Foundation, Columbus, Ohio.

HULTGREN, R. (1936). J. Chem. Phys. 4, 84.

MCCRONE, W. C. (1950). Anal. Chem. 22, 954.

PRINCE, E. (1972). J. Chem. Phys. 56, 4352.

- RUSH, J. J., TAYLOR, T. I. & HAVENS, W. W. JR (1962). J. Chem. Phys. 37, 234.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63.
- ZACHARIASEN, W. H. (1968). Acta Cryst. A 24, 212.

		5 / Ma	e.		
	Band lengthis.			C 11	
	1.46	C-N	(147)	6 00	
	1.45	N-N	(1.34)		
	195	6 7 24	(1.39)	2	
	.97	0-10	(1.20)	6	
	1.46	C-H	(1:00)	6	
	1.46				
	1.46				
	1.46				
	.95 /				
	.91				
	1.36				
	1.40 /				
	1.41	•			
	1:22				
	1.22.				
	1.21.				
	1.21.				
	1-21.				
	1.21.				
•					

A for I ROK Molende. H While 4.9 mm I have 6 af ? O Red 6.9 mm 1 hole 6 off. N 11, 21, 31 3 holes Planan 117°, 117°, 126° C TET. 3 1.

(3) (1-	~) 1/2 3,	1/2+3		(1-2c) , 1.	-3, 1-3	
	3'	3'		7'	3'	
CI	4.2	.7		10.8	4.7	
2	5.9	1.7	(3' y' 3'+1	12.5	3.6	(4) 5-1,3'
3	4.6	3.1	ez 5.9 12.4	11.2	2.3	Cz -17 3.6
NI	4.3	1.8	N. 4.3 12.5	10.9	3.6	N, -2.3 3.6
2	5.4	15		12.0	4.9	
3	5.9	2.9		12.5	2.5	
11	3.6	1.8		10.2	3.6	
21	6.4	3		13-0	5.7	
31	7.0	3.1		13.6	2.2	
OII	3.6	2.8	· · · · · · · · · · · · · · · · · · ·	10.2	2.6	
12	3.1	.7		9.7	4.6	
21	7.5	- 3		14.1	5.6	
22	6.0	-1.1		12.6	6.4	
31	8.1	2.7		14.7	2.7	
32	6.9	3.9		13.5	1.5	

(D) (%	+21 1/2-4	3	(8) (1/2+22), 1	-7, 1/2-7	+	
	¥'	3'	7'	3'		
<	4.2	-4.7	10.8	10.1		
2	5.9	-3.6	12.5	9.0	8" 2'-1	3'-1
3	4.6	-2.3	11.2	7.7	7	-1.7
NY	4.3	-3.6	10.9	8.9	-2.3	-1.8
2	5.4	-4.9	12.0	10.2		
3	5.9	-2.5	12-5	7.9		
"(3.6	- 3.6	10.2	9.0		
21	6.4	-5.7	13.0	11.0		
31	7.0	-2.2	13.6	7.6		
0 11	3.6	-2.6	10.2	7.9		
12	3.1	-4.6	9.7	10.0		
21	7.5	-5.6	14.1	11.0		
22	6.0	-6.4	12.6	11-8		
31	8.1	-2.7	14.7	8.1		
32	6.9	-1.5	13.5	6.9		

(\mathcal{D}')	2'	3'+1	(8)'	2'	3'-1	(8)" 3'-1	3'	(F) 5'-1	3'
Cz	5.9	7.1	Ŭ	12.5	-1.7	7	9.0	7	3.6
Ν,	4.3	7.1		10.01	-1.8	- 2-3	8.9	-2-3	3.6

2000 21.605

2 , 7, 3; 2, 1/2+3, 1/2-3; 31-2, 12-3, 3+12; 1-2, 1-3, 1-3 12

$\overline{\mathcal{O}}$ (). 1/2+3	12-3	(5) (2-x), y 1/2+3
	5'	3'	7' 3'
$\leq i$	9.0	10.1	2.4 0.7
2	7.3	9.0	0.7 1.7
3	8.6	7.7	2.0 3.1
NI	8.9	8.9	2.3 1.8
2	7.8	10.2	1.2 0.5
3	7.3	7.9	0.7 2.9
11	9.6	9.0	3.0 1.8
21	6.8	11.0	0.2 _0.3
31	6.2	7.6	-0.4 3.1
0 11	9.6	7.9	3.0 2.8
12	10.1	10.0	3.5 0.7
21	5.7	11.0	- 0.9 -0.3
22	7.2	11.8	0.6 -1.1
31	5.1	8.1	-1.5 2.7
32	6.3	6.9	-0.3 3.9

6 ()				
(b) (h-	ルー ミナタ	1-3	() *** 2° +1	
	51	3'	7' 3'	
CI	9.0	4.71	C2 0.7 7.1	
ι	7.3	3.6	NI 2.3 7.1	
3	8.6	2.3		
NI	8.9	3.6		
l	7.8	4.9	5' 3' 3'11	
3.	7.3	2.5	c2 ·7 12:4 丑	
11	9.6	3.6	N, 2.3 12.5	
21	6.8	5.7		X
31	6.2	2.2	5" 5+1 3	
0 11	9.6	2.6	C2 13.9 1.7	
12	10.1	4.6	M, 15-5 1-8	
21	5.7	5.6		
22	7.2	6.4	()" y+1 3+1	
31	5.1	2.7	CL 13.9 7.1	
32	6 - 3	1.5	N: 15.5 7.1	

2 in y' c 2 9.3 N1 8.9 2'-1 -1-7 -1-8

1/2-12, y, 1/2+3; 2-22, 1/2+y, 1-3; B 1/2+2, 3; 1/2+2, 1-3; 1/2+2, 3; 1/2+2, 1-3;

9=11	.600	5.800	14 2.90	0 3/4 8 .1	100								
6 = 13	. 1914	6.597 5.357	3.29	8	5/4	3/4							
	74	y	3	2 - 20	1 + 74	1-20	1 2-9	12+3	1-2	1/2-3	1/2 + 3	1-3	= apr 3
ci	4.15	2.43	-4.71	-1.3	1.3 9.95	-1.3 7.45	4.17	9.03	10.76	10.07	0.65	15.42	
Cz	2.84	0.66	-3.64	0:06 2:96	06 8.64	+ 0.06 8.76	5.94	7.26	12.53	9.00	1.72	14.35	-
C 3	1.5 4.42	1.97	-2.31	+1.5 1.38	115 10.22	-115 7.18	4.63	8.57	11.22	7.67	3,05	13.02	
MI	5.06	2-32	- 3.57	-2.746	+2:16	- 2.46 6.54	4.28	8,67	10.87	0.67	1.79		WWWWWWWWWWW
NZ	·6 3·47	1.16	- 4.86	- ·6 2 · 33	9.27	-16	5.44	7.26	12.03	10.22	0,50	14.28	
N 3	3.73	0.71	-2.49	-18 2.07	9.53	-18 7.87	5.89	7.31	12.48	7.85	2.87	13.20	un
NII	3.3 6.24 2.9	2.98	-3.59	-3.3	3.3 12.04	-3.3 5.36	3.62	9.58	10:21	8.95	1.77	14-30	ena
N 21	4.09	0.21	-5.68	1.717	1:2 9:84	-112	6.39	6.81	12.98	11.04	-0.37	16.29	
N 31	4.50	-0.44	-2.23	-1.6	10.30	-1.6 7.10	7.04	6.16	13163	2.59			Leso)
0 11	4.0	3.01	- 2.55	-4.0	4.0. 12.69	-4.0	3.59	9.61	10.18	7.91	2.81	12.74	
0 12	3.7 6.54 3.3	3.49	-4.64	3.77	3.7 12.39	-3.7 5.01	3.11	10.09	9.70	10.00	0.72	15.35	
021	3.66	-0.91	-5.64	2.14	9.46	7.94	7.51	5.69	14.10	11.00	-0.28	16.35	
0 22	4. 96	0.61	-6.43	0.84	10.76	6.64	5.99	7.21	12.58	11.79	-1.07	17.14	
0 31	4.10	-1.49	-2.70	1.70	9:90	7.50	8.09	5.11	14.68	8.06	2.66	13:41	
030	5.45	-0.32	-1.49	0:35	11.25	6.15	6.92	6.28	13.51	6-85	3.87	12.20	
H21 H22	2.54		ji	3 · 2 6 + . 74 3 · 64	8-34 7.96	9.06							

1.19 126 117 126 117 117 031 1.0 cm. VIM 126 1.21 032 022 1.22 117 N21 112 1.46 117 1.41 117 131 116 116 115 N3 1.45 1.27a 1.45 108 C3 108 T109 H 109 1.46 H 1.36 1.36 1.36 1.36 1.36 1.2 1.2 1.22 1.22 1.22 01 1.14 m Oiz 011 N 0 0 80. 30 3:2

×Υ Y-Z PLANE ≥c coord's gwin = distance from ³/4 glide plane

•

A	11.600
0	13.194
6	10.712
R	
fan	
	RCI
	1(2)
	N3 C3
	53.8
	42.60
	NZ CI
	Y
	62

~

£

RDX

a = 11.600

1.1

b= 13.194

229 eventing Snorthen

c= 10.714

8.324	JIX=1 : X m	· Y	Z	
C.	4.15	2.43	- 4.71	Carette Sa
C,	2.83	0.66	3.64	I want the stand
C.	4.42	1.97	2.36	N-古、北京之·
N,	5.05	2.32	3.57	The the series
Na	3.46	1.16	4.85	Spent Str
N	3.73	0.70	2.48	p=1 .32-1
N"	6.23	2.98	3.59	
N.	4.09	0.21	5.68	
Nz.	4.50	- 0.44	2.23	
0,, "	6.88	3.00	2.55	
0,2	6.59	3.48	4.64	
0,	3.65	- 0.91	5.64	2.5
022	4.96	0.60	6.42	
0,	4.10	- 1.48	2.69	
022	5.44	- 0.31	1.49	
H	4.62	2.62	5.51	
H	3.49	3.10	4.51	
H21	2.54	- 0.20	3.78	
H22	2.16	1.21	3.46	
Hal	3.74	2.61	2.09	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Hzz	5.01	1.91	1.62	5.3
THE REAL				

×У	Y	Z			
x, y $\frac{1}{2} x, y $ $\frac{1}{2} x, \frac{1}{2} + y $	y Dy T = y	$z + \frac{1}{2}$	for X :	1=11.6,	12=5.8
之-20, 五十以及	7-4	, Z+±	¥ :	1=13.2	1= 6.6
立+2, 立-4	D=+4	1 2-2		Set . E	
1-x, 1-44	1 + 4	1-Z	Z:	1=-10.7,	1=-5.3
之+元, 1-94	bi-y	, <u>1</u> -Z		del la	14
1-x, 1-44	b1-4	1-Z			
1	9	· · · · · · · · · · · · · · · · · · ·			
				(°	
$C_2 :- X$	Y	$N_1 := X$	Y		E la
1 2.8 x	0.7 y	05.0	2.3		
2 3·0 1/2-x	0.7 y	20.8	2.3		
S 2.8 ×	7·3 y+ 1/2	\$ 5.0	8.9	<u> </u>	
6 3.0 ±-x	7.3 y+1/2	60.8	8.9	12-31	
3 8.6 x+1/2	5.9 2-4	3.10.8	4.3		
A) 8.8 1-2C	5.9 2-9	4 6.6	4.3	. <u>.</u>	
(\$) 8.6 oct 1/2	12.5 1-y	(7) 10.8	10.9		
(8) 8·8 1-7C	12.5 1-4	8.6.6	10.9		
-	st la	C. + i			
$C_2 : - Y$	Z	$N_1 := Y$	Z		
() O.7 y	- 3.6 Z	<i>() 2</i> ·3	-3.6		
2 0.7. y	- 8.9 = +2	2.3	-8.9		
3 5·9 ±-4	-3.6 Z	3 4.3	-3.6		
@ 5.9 2-y	-8.9 -+2	(4) 4·3	-87		
(5) 7·3 y+1/2	-1.7 2-2	5 8.9	-(.)		
6 7.3 9 12	-7.1 1-2	6 8.9	-).		
(7) 12.5 1-y	-1.7 2-2	9 10.9	-1.1		
8 12.5 rg	- 1.1 1-2	\$ 10.9	-7.1		
N.					
$C_1 = X$					
(š) () 4·1					
93 10.0			~		
8 0 1.7	, 40				
	5 /1				

а,

CANE N .A

NUN 239 53 c 1 239 e c3, NI, CI C3, NI, NII C CI, N2, N21 C1, N2, C2 C2, N3, N31 C2, M3, C3 231 N2! 9 cz 40 -1150 (10) a/ C3 to C1 2 vm CI C3 to NII 24° Corre abart C3-NI C 2 c 3 and then +21° to C3NI 1150 BOOL 239 2 NI (1) by cz to CI cz to NII NZ 2 336° about C3-N/ 2 NB o then A21° to C3N1 -NI N21 Į DUCO 239 1 N 31 1150 (12) ay CI TO C2. CI to N21 3.92 about (1 - 000 N2 othen Hoz and to CINZ 244 (13) by CI TOCL CI GN21 115° 3202 about (- NL other 1162° to CIN2 200 244 20 16 molecules required to furnish I cell.

a 11.600 1/411 = 2.900 6 13.194 c 10.714

1.00 (110

		(T MOS)	
	<i>ク</i> く	7	3
C,	·35796 (-·35)	18434	- 43971
	4.152	21432	- 4.711
	- " 1.252 1.12		
C2	.24448	.05012	33977
	2.836	- 6 61	-3,640
	-0.064		
C3	:38112	14942	- · 21559
	4.421	1.971	- 2.340
	1. 243		
NI	. 43 594	17588	
	5.057	2:324	- 3,572
NZ	.29870	08799	- 45338
	3.465	1.161	- 4.838
NB	32/92	05380	23236
	3 734	.740	- 2.490
	i /		
NI	.53790	122617	- 33498
	6-240	21984	- 3.589
NLI	.35301	0 1593	52975
	4.095	.210	- 5.676
NBI	.38801	03346	20790
	4.501	441	- 2.227
011	. 59 359	.22792	23806
	6 - 886	3.007	- 2.551
012	.56832	126416	4 33 4 6
	6.593	3.485	- 4.644
021	131506	06930	- 152643
	3.655	914	-5,640
022	14 2792	.04601	59968
	4. 0764	,607	- 6,425
031	35373	11255	- 25159
	4.103	-1.485	-2.695
	1.0 c		

032	146974	02393	- 13872
	5.449	- 316	- 1.486
	2.771		
H 11	39803 (+.25)	. 19848	- , 51462
	4.617 -	2.619	- 5.514
	1.939 1.69		
H 12	.30085	.23543	- : 42/28
	3.490	3,106	- 4.514
	1812 .56		
421	.21884	-101539	- 35290
	2,539	-,203	- 3.781
	- 139 - + 1f.		
H 22	. 18594	.09206	32304
	2.157	1,215	- 3:461
	- 152127		
H31	132312	19782	-119523
	3.748	2.610	- 2.092
	1.070 .82		
432	:43240	.14506	15155
	5.015	1.914	-1.624
	2.337 2.09		

高曲之	
(2) (2) (2) (2) (2) (2) (2) (2)	

				For 20 molecules
	Jan M	decile.		
5	Rods. 1.27 c	m Gaff		120
3	1.14	1		20
(4)	1.19	2		40
3	1.00	6		120
0	0.80	6		(120
© B	als. 4.9 ma	White I have 6 aff.		120
Ð	Balls 6.9 mm	Red I hole 6 off.		120
		Le d'val		
8		Block Tetrogend 4 holes	109%° 3 off	60
(9)	Blue mitial	hole with till an rol.	3 2	60
Û	To I.H.	around 1H	//	
	1170	0		
	117°	180		
* () ~	Blue Initial	hole with 1:27 cm roch.	1 m.	20
	To IH	brond 1H		
NÍ	121	0 24		
1.1	115	+ 2 0		
		*		
(1) 0	To 1H	Oround 14		20
	121			
	115			
11 Ga	e 1	201	2.01	11.6
* (12) 0	1162	0 572	2 044	40
	115	77		
(13)	1112	0 3705	- Al	40
(1) 0	115	-4 0	2 071	
* (i)	117	0	· · · · · · · · · · · · · · · · · · ·	
n (l) u	115	+ 3		
(15) Ir	117	0		
	115	- 3		
		0		
1 er	ch of a or	b ·	/	
	/ -			

DRILLED BALLS AND CUT RODS

BALLS are of methylmethacrylate polymer, of diameter about 6.9 mm, (4.9 mm for HYDROGEN). They are drilled to 1 mm from the centre, so that each interatomic distance is 2 mm greater than the rod length.

RODS are 1 mm diameter steel (stainless). The recommended scale is 1 cm = 1 Å, i.e. a magnification of exactly 10°. Useful models can, however, be made on other scales using these materials. The rods are cut from No.19 gauge wire.

ASSEMBLY can be done using pliers, holding the rod with only 2 mm protruding and pressing into the hole with a twisting movement. Any burr on the rods must first be removed preferably on a cup grinder. Rods should be finally pushed firmly home with large pliers or by the use of a hammer and anvil for the balls.

PRICES

	1	10	100	1000
Balls 6.9mm	6d (20.025)	5/- (30.25)	82/10/- (82.50)	\$25.00
Balls 4.9mm	4d (20.015)	3/- (€0.15)	£1/10/- (£1.50)	\$15.00
Rods	2d (20.01)	1/- (20.05)	10/- (80.50)	85.00

BALLS 6.9mm

DRILLINGS

OPAQUE (N	on-metals)	No. D	rilling
Black	(Carbon)		n de la deserva de la deserva de la sobre y servada en
	non the second		
Red	(Oxygen)		
Dime	(TT.))		A and all a local gauge as a file support which a
BIUE	(Nitrogen)		
Orange	(B, Se, Te)		in an bhailtean an a
Yellow	(Sulphur)		na garanden namurada a finans y filinan angé yan i karan
Greon	(F,C1)	1	
White	(Ráre Gases		
Dark Blue	(I, At)	1	
Turquoise	(Br)		
Lilac	(P)		
Pink	(As)		an a
Brown	(Si)		

TRANSPARENT (Metals)

Clear (Zn, Cd, Hg)
RUDY (L1, Na, K, RD, US,
Fr, Mg, Ca, Sr, Ba, Ra)
Ererald (Y, Zr, Nb, Mo,
Tc, Ru, Rh, Pd, Ag)
Topaz (Sc, Ti, V, Cr,
Mn, Fe, Co, Ni, Cu)
Pink (Be)
Orange (Ge, Sn, Sb,
Pb, Bi, Po)
Sapphire (La, Iff, Ta,
W, Re, Os, Ir, Pt, Au)
Amethyst (Al, Ga, In,
(רַיַר
TOTAL No. of 6.9mm

BALLS 4.9min

second of the se	White (opa	o ague	Hyd:)	rogen			
	TOTAL	No.	of	4.9mm	-	 	

TRIG: Three holes in plane, 120 angles THREE AT 1092: non-planar TWO AT ONE:
GENERAL: For each type of drilling specify:
Initial hole with rod
TO I.H. AROUND I.H.
in degrees
*
Are drillings to be centrosymmetrical?
YES/NO. (If Yes only the nonesymmetric
drillings need be specified).
* Mecsure closeribs looking at the ball
(to get correct onantiemorph).
RODS

cm	ġ Ĺ	for:	No.
0.80	1.00	0-H, N-H	
0.90	1.10	C-H	
1.00	1,20	C-C triple	
1.14	1.34	C-C double	
1.19	1.39	C-C aromatic	
1.23	1.43	C-0, S-0	
1.27	1.47	C-IJ	
1.34	1.54	C-C single	
1.55	1.75	C-C1, N-C1	-
1.80	2.00	P-01	1
2.61	2.81	Na-Cl	
3.15	3.35	C, C (no bond)
	E.		
(Ins	ert any	/ spocial leng	ths requireà)
COST		6.9mm ba	lls
		1. Orm ho	11a

4.9mm balls	
Rods	
TOTAL	na fer hafte soll after soll ann star fold a barran san san san san san san san san san s
Packing and postage	and the second and a second
GRAND TOTAL	

ASSEMBLED MODELS

August 1970

The list has been extended to include some models of special interest. For example the Apatite model shows well the place of Fluorine in the lattice of bone-mineral. The Corundum model shows the curious distortion of the structure which was an early suggestion of unexpected metal-to-metal bonds. The Cuprite model shows the interpenetration of two independent copper-oxygen lattices. In $Pb_{5}O_{4}$ we have evidence for the co-existence of two oxidation states in the one crystal. The Molybdenum Sulphide structure shows why this compound acts like a lubricant. The Quartz model shows the existence of screw axes all of the same sign, giving optical activity, while in the Zircon model there are screw axes of both senses, resulting in no optical activity. The Regular Solids are those known to the ancient Greek philosophers, and the **S**nowflake model shows the six arms of the typical snowflake.

There are many other features of interest brought out by this series of models and they are described in the Legends which accompany each model.

The range of colours used now includes transparent balls, and this adds further to the beauty of these models, which are outstanding in their compactness, accuracy, permanence and cheepness.

The lower portion of this sheet can be used to Order: NOTE: Special boxes or stands, and postages EXTRA at cost.

To: BEEVERS MINIATURE MODELS, SIMON SQUARE CENTRE,

PLEASANCE, EDINBURGH 8,

EH8 9HW, SCOTLAND.

Date:

From:

Order No:

Name		Code)	£	s	d	£	No.	Required
ALPHA HELIX	75	52	116	3	13	0	3.65		
APATITE	150	0	285	10	0	0	10.00	1	
BODY-CENTRED CUBIC	19	0	36	1	0	0	1.00	1	· · · · · · · · · · · · · · · · · · ·
CAESIUM CHLORIDE	35	0	64.	1 1	14	0	1.70		
CADMIUM IODIDE	38	0	72	1 1	15	0	1.75		
CALCITE	74	0	93	2	8	0	2.40		
CORUNDUM (RUBY)	106	0	202	5	4.	0	5.20		
CUPRITE	87	0	104	2	15	0	2.75	1	
DIAMOND (Showing Cell)	78	0	128	2	18	0	2.90	1	
" (12 edge tetrahedr)	652	0	1144	25	21.	0	25.20		
FACE-CENTRED CUBIC	17	0	36	1	0	0	1.00	1	
FAUJASITE (Zeolite)	672	0	864	22	0	0	22,00	Ì	
FLUORITE	4.6	0	80	2	0	0	2.00		
GRAFHITE	67	0	105	2	16	0	2,80	1	
HEXAGONAL CLOSE-PACKED	18	0	45	1	0	0	1.00		
ICE	26	50	50	1 1	15	0	1.75		
LATTICE, SEVEN PRIMITIVE	56	0	86	2	16	0	2.80]	
LEAD OXIDE Pb30/	51	0	80	2	6	0	2.30	-	
LINDE MOLECULÁR SIEVE	120	0	144.	3	16	0	3.80	-	
LITHIUM HYDROXIDE	50	0	88	2	7	0	2.35		
MOLYBDENUM SULPHIDE	1.5	0	90	2	5	0	2.25	1	1
PERIODIC TABLE IN COLOUR	94	1		3	10_	0	3.50		
PEROVSKITE	89	0	204	4.	2	0	4.10		
FLATINUM SULPHIDE	51	0	72	3	12	0	3.60		
QUARTZ (Two Helices)	62	0	64	2	6	0	2.30		1
REGULAR SOLIDS (Five)	50	0	90	2	0	0	2.00		
ROCK SALT (3 balls/edge)	27	0	54	1	4	0	1.20		
" (4 balls/edge)	64	0	144	2	18	0	2.90		
" (8 balls/edge)	512	0	1344	25	8	0	25.40		
" (12 balls/edge)	1728	0	4752	88	4.	0	88.20		1
RHENIUM OXIDE	135	0	162	4.	6	0	4.30		
RUTILE	52	0	78	2	6	0	2,30		
SCANDIUM HYDROXIDE	135	0	162	4.	6	0	4.30		
SET(Diamond, Blende, Rocksalt	162	38	303	6	0	0	6.00		
glucose, benzene, naphthaln,									
hexameth-tetramine)				1					
SILICATES (Partial)	177	0	224	15	15	0	5.75		
SNOWFLAKE (Six Arms)	512	0	540	12	0	0	12.00		
SODIUM NITRITE	40	0	50	1	12	0	1.60		
WURTZITE	39	0	58	1	2	Q	1.45		
ZINC BLENDE	30	0	44	1	2	0	1.10		
ZIRCON	103	0	168	4	14	0	4.70	1	